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The land area covered by real-time light-
ning detection systems has grown significantly
during the last decade. These systems detect
and locate lightning discharges over large
areas with networks of antermnas that remotely
detect the electromagnetic radiation from
lightning channels. As the technology has
matured and been used in more situations and
more countries, the benefits have become clear
to many users, including weather services. This
trend is likely to continue in the coming years.
Presently, lightning detection networks are in
operation over part or all of three North
America countries,  part of -Australia, five
countries in Asia, and nine countries in Europe.

For meteorclogical applications, uses for
lightning data are in se categories:
= Lightning data a5 a substitute for other

types of information ection, such as

provided by radar or satellite sensors,
when data from the systems are
temnporarily missing or nc

e The real-time feature of
tion networks provides
information about thun
is not available from t

e Lightning activity is a potentially val-
uable covariate with radar and other data
to identify trends and coverage of the
convective weather situation in.a way that
is not possible with any single sensor alone.

e Flashes identify the general nature of the
threat from forest and range fires.

e Lightning is one of the most significant
meteorological causes of deaths and in-
juries, and a direct monitoring of this threat
over large areas could help to reduce the
number of lightning casualties through
direct warnings and short-term forecasts.

St
S

ghining detec-
ong-by-second
s that often

The methods of lightning detection in use
today are very different than only a decade
ago. Only commercially-available systems
will be described in this report. The most
common system in real-time use is the direction-
finder (DF) antenna network. Another common
system in use by weather services is the time-
of-arrival (TOA) antenna network. Another
less common approach is the radiometric
interferometry lighining warning system
(SAFIR). These systems constitute a new
generation of instruments that have been
developed within the last 15 years. Three
broad categories of scientific and technological
advances, originating primarily outside the
meteorclogical community, have made such
real-time network lightning detection a
reality:
¢ Major advances in communications capa-

bilities
e Enormous improvements in electronic design
¢ Improved understanding of lightning dis-

charges and associated electromagnetic
fields.

This report reviews the operation
principles of this new generation of real-time
lightning detection networks, and outlines some
of the meteorological applications that have
been developed. The discussion is restricted to
detection of lighining by systems that cover a
large encugh region to be of interest to
meteorological services. Not included in this
report are single sensor systems that detect
lightning in a limited area around the sensor,
and provide only a general indication of its
location. Also not included are other systems
that are either experimental or not commer-
cially available.



2. METHODS FOR LIGHTNING DETECTION BY REAL-TIME NETWORKS

A. THE LIGHTNING DIS CHARGE - BASIC PROCESSES AND TERMINOLOGY

Lightning discharges can be divided into
two types:
¢ Cloud-to-ground (CG) discharges, which

have at least one channel connecting the

cloud to the ground

¢ Cloud discharges that have no channel to
ground. These cloud discharges can, in turn,
be classified as in-cloud, cloud-to-air, and
cloud-to-cloud.

Most of the practical meteorological
interest in lightning detection focuses on cloud-
to-ground (CG) lightning discharges. In
addition, the two major detection systems in
general use today are designed for detecting CG
lightning. However, cloud lightning may also
be important for meteorological applications.
Recent research indicates that detection of
cloud lightning could be a useful tool for
nowcasting (Juvanon du Vachat and Cheze,
1993) and for assessing severe weather charact-
eristics of convective storms such as microbursts
and tornadoes (Goodman et al., 1988c, 1989;
Buechler et al., 1988, 1989; Laroche et al.,
1991a,b; MacGorman et al., 1989).

In order to better understand the prevalent
CG detection technology, and to define the
terminology to be used in the rest of this report,
we present a short description of CG lightning
discharge processes. Excellent reviews and
explanations of this subject are by Uman (1969,
1987); these two references are given at the end
of this section. A good summary by Fisher
(1992) is in the list of lightning network publi-
cations in section 5 of this report.

A CG lightning discharge is typically
initiated inside the thundercloud. It is first
apparent when a faint negatively charged
channel, the stepped leader, emerges from the
base of the cloud. Under the influence of the
electric field established between the cloud
and the ground, the leader propagates towards
the ground in a series of luminous steps of about
1 microsecond in duration and 50 to 100 meters in
length, with a pause between steps of about 50
microseconds. The stepped leader reaches the
ground in tens of milliseconds depending on the

tortuosity of its path. When the stepped
leader channel approaches the ground, it has
about 5 Coulombs of negative charge on it and
carries a very strong electric potential with
respect to ground of about -108 volts.

The strong electric field between the leader
and the ground causes upward-moving dis-
charges, or streamers, from objects on the
ground. When one of these streamers contacts
the tip of the leader, 50 to 100 meters above the
surface, the following occurs:

* The leader channel is connected to the
potential of the ground

* Charge starts flowing to the ground

e Current wave propagates as a bright pulse
up the channel.

This discharge process is called a return stroke

and takes less than 100 microseconds. The

charge deposited on the leader flows down the

channel behind the wave front producing a

current at the ground that has an average peak

value of about 30 kiloAmperes. It takes about 1

microsecond for the current to reach its peak

value, and about 50 microseconds to decay to

half that value.

As the leader charge flows down the
channel to the ground, electric and magnetic
field changes are produced that propagate
outwards from all segments of the channel
involved in the current flow. These field
changes have rapid variations that follow the
variations of the current flowing down the
channel of the stepped leader. The field
changes have electrostatic, inductive, and
radiative components, and each of these
components has fluctuations of different
frequencies that have different attenuation
characteristics as the fields propagate from
the lightning channel. Therefore, the shapes
of the field changes are strong functions of
radial distance from the channel. The detailed
structure of the first several microseconds of the
electric and magpnetic field changes produced by
the return stroke is of fundamental importance
in the lightning detection systems described
below.



After the current has ceased to flow down
the stepped leader channel, there is a pause of
about 20 to 150 milliseconds. After that,
another leader can propagate down the
already established but faint lightning
channel. This leader is not stepped, but rather
continuous and is called a dart leader. On the
other hand, no dart leader might occur and the
flash may end. A dart leader is produced when
additional charge is made available to the top
of the decaying channel in less than about 100
milliseconds by breakdown mechanisms known
as K- and J-processes. The dart leader deposits
about one Coulomb of charge along the channel
and carries cloud potential to the vicinity of
the ground. Again a return stroke is produced.
The peak amplitude of the current flowing in
subsequent return strokes is usually, but not
always, smaller than that of the first return
stroke. As a consequence, the induced field
changes are also usually smaller in amplitude
and have shorter durations than those of the
first return stroke. Dart leaders and return
strokes subsequent to the first are normally not
branched. The combination of leader and return
stroke is known as a stroke. ~ All strokes that use
essentially the same channel to ground con-
stitute a single cloud-to-ground flash. A flash
might be made up of one to a few tens of strokes.

Lightning discharges to ground can also be
initiated by downward-moving leaders that
are positively charged. The resulting return
stroke effectively lowers positive charge from
the cloud to the ground. The combination of
leader and return stroke is then called a
positive stroke.  Usually, there are no
subsequent leaders down the existing channel,
so that only one stroke makes up a positive
flash. Generally, positive flashes constitute
only a few percent of all CG flashes. The peak
current of their return strokes, however, can be
larger than the peak current of negative return
strokes and, thus, can cause greater damage
than negative flashes. - A large percent of forest
fires and damage to power lines is probably
caused by positive flashes.

There is an extremely small percentage of
flashes that are initiated from the tops of
buildings and towers, as well as those triggered
by rockets attached to ground by wire. Their
leaders move up to the cloud, and their

. channels branch upwards.

Uman, M.A., 1969: Lightning. Dover Publications,
Inc., New York, 298 pp.

Uman, M.A., 1987. The Ilightning discharge.
International Geophysics Series, 3%, Academic
Press, Inc., Orlando, Florida, 377 pp.




B. MAGNETIC DIRECTION FINDER (DF) NETWORKS

Direction-finder (DF) lightning location
systems are based on classical radio direction-
finding technology developed several decades
ago. Two or more crossed-loop antennas located
at different places are used to detect the
magnetic field emitted by the return stroke
current. Each antenna consists of two vertical
loops perpendicular to each other and oriented
north-south and east-west, respectively. The
signal induced in each loop depends on the in-
clination of the lightning channel, the current
flowing in the channel, and the angle between
the plane of the loop and the bearing or azi-
muth to the lightning channel. By taking the
ratio of the signals induced in each of the two
loops, the ratio depends on only the inclination
of the channel and its bearing. If the channel is
fairly vertical, the bearing to the lightning
flash can be determined for each crossed-loop
antenna. The actual location can then be
determined by triangulating signals from
different antennas.

The major technological improvement to
classical radio direction-finding by Lightning
Location and Protection, Inc. (LLP) in the 1970s
consisted of a patented time-gated, wide band,
wave form discrimination algorithm that is
used to process all incoming signals at each DF.
This algorithm identifies the initial radiation
peak of the magnetic field. This peak is
associated with the beginning of the return-
stroke current roughly 100 meters from ground.
At that point the channel is predominantly
vertical and, thus, its azimuth can be obtained
quite accurately. In addition, concentrating on
the lower 100 meters or so of the channel has
the advantage of obtaining the location of the
channel at the point of ground attachment, so
that location uncertainties due to the tortuosity
and branching of the channel can be avoided.

The LLP system also discriminates against
signals from noise and cloud flashes by
examining certain features of the shape of the
incoming signal wave form. If those features
satisfy certain criteria, previously established
from the statistical analysis of a number of
waveforms from known cloud-to-ground flashes,
the signal is considered to have originated by a
lightning stroke to ground. Signals not passing
the pre-established criteria are rejected. Once
a CG return stroke is detected, the DF counts the

number of subsequent return strokes identified as
being part of the same flash, and produces one
record giving the azimuth, peak signal
strength, total number of return strokes, and the
polarity of the flash (whether the discharge
brought negative or positive charge to the
ground). The polarity of the CG flash is
determined by a flat plate electric field
antenna. The flash record is then transmitted
to a central processing site.

At the central site, the records from all the
DFs of the network are received. A Position
Analyzer (PA) takes all the DF records
arriving within a preset time window
(typically 20 milliseconds or less), assumes
that the DFs detected the same flash, and cal-
culates the location of the lightning strike to
ground. Basically, only 2 DFs are needed to
locate a flash. Figure 1 illustrates this
situation. Solid lines represent the measured
bearings to the flash, and dashed lines outline
the angular random error in azimuth measure-
ments. This error is typically less than 1° for
the earlier DF models and less than 0.5° for the
newer ones. The dot indicates the computed
flash location while the shaded region indi-
cates the area where the flash probably
occurred. A complication arises when only 2
DFs detect the flash and the flash lies close to
the baseline (Figure 2). In that case, the PA
assumes that the flash occurred along the base-
line and uses the ratio of the signal strengths to
position the flash. When 3 or more DFs detect
the same flash, there is redundant information
for the triangulation calculation, and the flash
location can then be obtained by a method that
minimizes the chi square of the differences be-
tween the measured azimuth and the computed
one. Figure 3 portrays this situation. The lines
represent the measured azimuths to the flash.
In this situation, 3 possible locations are defin-
ed by the 3 different intersections of the bearing
vectors (open circles). The PA then computes
the position (solid dot) that would minimize
the square differences between observed (solid
lines) and computed azimuths (dashed lines).
For clarity, the region enclosed by the 3 inter-
sections has been drawn much larger than it is
in real situations relative to the DF spacing.

Early lightning research leading directly
to DF technology is described by Herrman et al.



(1976); Krider et al. (1976, 1980); Lin et al.
(1979); and Uman et al. (1980). - Two good
summaries of DF detection technology are by
MacGorman et al. (1991) and Fisher (1992).

The DF lightning detection equipment is
manufactured - by Lightning - Location and
Protection, Incorporated (LLP) of Tucson, Ari-
zona. GeoMet Data Services (GIDS) is colloc-
ated with LLP and operates the national light-
ning detection network of direction-finder
antennas for the continental United States, and
sells the data to a variety of users. The growth
of the U.S. national network using DF
technology can be followed with Binford et al.
(1983); Maier et al.- {1983); Orville et al.
(1983a,b, 1990); Orville and Songster (1987);
Nadis (1989); Orville (19914,1993).

Studies with DF technology outside its
origin in the U.S. have been in Canada (Jack-
son, 1982; Raynor, 1982; Nimchuk, 1985; Jani-
schewskyj and Chisholm, 1992); France
(Helloco and Krider,; 1989; Tourte et al., 1988,
1989; Le Boulch, 1989; Le Boulch and Plantier,
1990; Juvanon du Vachat and Cheze, 1993); and
in Sweden (Murty and Lundquist, 1983;
Israelsson et al., 1985; Melin, 1990, 1991;
Namasivayam and Lundguist, 1991),

Principal sources of error for DF systems are
topographic features and man-made structures
that intercept and reradiate, in a different
direction, the electric and magnetic field
signals produced by lightning discharges. The
errors that are introduced are specific to each
antenna site, and called site errors. These
errors are a function of azimuth to flash
location, and depend on distributions of terrain
features and man-made structures around an-
tenna sites. They tend to be fairly constant with
time and, when determined for a DF, measured
azimuths can be corrected in real time.

Several schemes have been devised for cor-
rection of site errors (Mach, 1984; Hiscox et al.,
1984; Guillo, 1985; Mach et al., 1986; Orville,
Jr., 1987; Schiitte et al., 1987a,b; Kawamura et
al., 1988; Passi and Loépez, 1989; Chao and
Qiming, 1991; Lopez and Passi, 1991; Anderson,
1993; Tyahla and Lépez, 1994). All methods
depend on statistical analysis of previously
recorded data. Usually, data from one
thunderstorm season are enough. Once
corrections are applied, residual azimuth
measuring errors are 0.5° or less.

Flash location accuracy by a network of DFs
depends mainly on distances between DFs, net-

work configuration, and flash position within
the network. Average location accuracy of the
National Lightning Detection Network
(NLDN) as presently configured by GDS is es-
timated between 2 and 4 ki, depending on flash
location. DF separation for this network is on
the order of 250 to 300 km. For smaller networks
with DF separations of tens of km, location ac-
curacy can reach 0.4 to 0.5 km (Maier, 1991a, b).

Network -detection efficiency is also a
function of network configuration, antenna sep-
aration, and location of flashes with respect to
the network. It also depends on DF gain. An
important factor determining whether a flash
is detected or not is the attenuation of flash
signal with distance. If the magnetic field
strength of a flash is not large enough to reach
at least two DFs with a value above DF
threshold, flash location cannot be determined.
Another factor apparently limiting detection of
all CG flashes is that wave form criteria used
to accept a flash as cloud-to-ground may not be
adequate for CG flashes in all geographical
regions and all weather situations (Ishii and
Hojo, 1988, 1989). A similar situation arises
when the flash's signal strength is too small
and the wave form fails to satisfy the
acceptance criteria (Maier, 1992). In some
cases, LLP has modified wave form discrim-
ination parameters. Present estimates
(MacGorman and Rust, 1988a,b,c, 1989; Cum-
mins et al., 1992; Maier, 1992) put the detection
efficiency of DF networks at 60 to 90%
depending on network configuration, DF
separation, and flash location.

Over the last few years, LLP has
developed a method for lightning location that
combines direction finding and time-of-arrival
information (Cummins et al.,, 1993). This
method, called Improved Performance from
Combined Technology (IMPACT) by LLP,
estimates both the location and time of
occurrence of the retumn stroke. Each sensor pro-
vides information on azimuth and the time it
took the signal to propagate from its origin to
the station (absolute arrival time minus the es-
timated time of occurrence). The azimuth
establishes a vector from the sensor to the
stroke, while the propagation time establishes
distance (range), thus defining a circular locus
of possible locations around the sensor. Ideally,
the location and time of occurrence of the dis-
charge are obtained by selecting the position
and time that cause all circles and vectors to



intersect. In practice, location and time are
determined by iteratively adjusting initial
estimates of these parameters so that diff-
erences between observed and calculated azi-
muths and propagation times are minimized.
When only two stations detect a flash, there is
redundant information for an optimized esti-
mate of location. In that case there are four
measured parameters (two azimuths and two
arrival times), while only three parameters
are estimated (latitude, longitude, and time).
Location accuracy has been estimated as 500
meters or better in areas surrounded by sensors
using the IMPACT location algorithm.

Although LLP systems detect and analyze
individual return strokes from each flash, they
group all strokes that belong to the same flash
and provide only one data record per flash.
This record contains time, location, and peak
signal amplitude of only the first return stroke,
but provides multiplicity or number of strokes
that made up the flash. If the user wants the
total number of strokes over an area, the
multiplicity of all flashes is added over the
region of interest. New systems with IMPACT
technology will provide information for each
stroke.

DF1

+ 1° Azimuth Error

\4—'—- Area of Probable

~ Flash Location

Ficure 1. Determination of flash location when only 2 DFs detect it. Solid lines represent measured
bearings to the flash; dashed lines outline the angular random error in azimuth measurements. Dot
indicates computed flash location; shaded region indicates area where flash probably occurred.
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Ficure 2.

Determination of flash lpcation when only 2 DFs defect flash close to baseline.

The Position

Analyzer assumes that flash occurved along the baseline and wuses the ratio of signal sirengths fo

position the flash.

Measured DF2
Azimuths

Azimuths o

/

! Computed Position >

Ficure 3. Determination of flash location when 3 DFs defect if.

Solid lines represent measured azimuths

to flash. Open circles indicate the 3 possible locations defined by 3 different intersections of azimuth

vectors.

The Position Analyzer computes the position (solid dot) that would minimize the square

differences between observed (solid lines) and computed azimuths (dashed lines).



C. TIME-OF-ARRIVAL (TOA) NETWORKS

Time-of-arrival (TOA) lightning detection
systems are based on determining differences in
arrival times at various stations of the electric
pulse emitted by a lightning discharge. This
methodology has been used in different
countries for the detection of lightning since the
early 1970s. A commercial TOA system called
Lightning Position and Tracking System
(LPATS) was first developed and manufactured
early in the 1980s by Atlantic Scientific
Corporation, that later became Atmospheric
Research Systems, Inc. (ARSI). The system uses
an array of four or more simple whip antennas
roughly configured in a square and separated by
200 to 400 km. Each station detects the electric
pulse emitted by a return stroke and assigns to it
the time of arrival of its peak amplitude. As
discussed before, the peak amplitude
corresponds to the initiation of the return stroke
current when the leader channel is
approximately 100 meters from the ground.

The antenna stations must be synchronized
to a dependable absolute time standard such as
a television station, LORAN-C, or the Global
Positioning System. Each station sends the
information about each electric pulse it detects
and the time of arrival of the peak amplitude
to a central analyzer. This analyzer computes
the difference in the time of arrival of the
lightning signal between pairs of stations. For
a given time-of-arrival difference between a
pair of stations, the stroke that emitted the
signal could be located anywhere along one of
the branches of a hyperbola that passes
between the two stations and has as foci the
two station locations, as illustrated in Figure 4.
Although the branch of the hyperbola along
which the stroke is located can be defined by
the sign of the time-of-arrival difference, the
specific location of the stroke can not be
determined. When three stations detect a
stroke, however, two non-redundant hyperbola
branches are defined. As shown in Figure 5, the
intersection of these can define the location of
the stroke (open circle). In some situations,
however, the two hyperbola branches can
intersect at two points, one close to the network
and another away from it. This situation is
illustrated in Figure 6, where the two open
circles represent the two intersections, one

corresponding to the stroke position and the
other one not. Two hyperbola branches will
intersect in two points in the case of stroke
signals originating in the region outside of the
area enclosed by the baselines, between the
lines extending the baselines outwards. In this
case a minimum of four stations (giving three
different non-redundant hyperbolas) must
report the arrival of the signal from the same
stroke in order to unambiguously locate the
source of the signal. The stroke location is
found by solving for the intersection of
spherical hyperbolic equations modified to
account for the oblate spheroidal shape of the
earth.

Unlike the LLP system, LPATS does not
employ waveform discrimination to determine
if the electric pulse received at an antenna site
is from electric noise, a cloud, or a CG stroke.
Nor does LPATS discriminate between the first
stroke of a flash and strokes subsequent to the
first. Thus, each individual station reports to
the central analyzer all electric field pulses
detected. Signal attenuation due to
propagation, however, contributes to the
elimination of many, although not all, non-CG
strokes as follows: non-lightning noise signals
are usually weak compared to signals from
lightning discharges. Likewise, cloud strokes
produce signals that generally, but not always,
have smaller peak amplitudes. Cloud pulses
also tend to have their largest amplitudes at
higher radio frequencies than those of CG
strokes. Thus, noise and cloud stroke signals
will be much more attenuated by propagation
than those from CG strokes. Since sensors are
typically located 200 to 400 km apart, the
probability of simultaneous detection of a non-
CG stroke by the 3 or 4 stations needed for
location would be small, and many non-CG
signals would tend to be discarded in that way.

ARSI now examines the width of the
detected pulses to distinguish between cloud
and CG strokes. Generally, cloud lightning
pulses are narrower than those from CG strokes.
ARSI uses a 10-microsecond pulse width
criterion to determine if a pulse is from a cloud
or a CG stroke. If at least one of the stations
detecting a stroke reports a pulse shorter than
that value, the source is not regarded as a CG



stroke. ARSI has estimated that using this
technique, only 2% of the strokes reported by
LPATS are from cloud lightning. - However,
Casper (1991) estimated that 30% of the total
detected population is cloud lightning. Ishii et
al. (1992a,b) used an LPATS network (with
baselines of 130 to 180 km) that used the 10~
microsecond criterion to eliminate cloud strokes.
Their results indicate that 30% of all detected
flashes in the summer were positive, while
typically less than a few percent of all CG
flashes are positive in Japan during the
summer. They attributed the additional
positives to cloud bipolar pulses having a
duration of 20 to 150 microseconds. Narrow
bipolar pulses from other kinds of cloud
discharges, however, were effectively filtered
out by the 10-microsecond criterion.

The time-of-arrival lightning detection
equipment is manufactured by Atmospheric
Research Systems, Inc. of Palm Bay, Florida.
The growth of the national lightning network
using TOA technology in the United States can
be followed with Bent et'al {1983); Lyons and
Bent (1983); Bent and Lyons (1984); Lyons et al.
(1985a,b,c, 1989d}; Lyons and Pielke (1988);
Casper (1991); Casper-and Bent (1992); Cook
and Casper (1992); and Ishii et al. (1992a,b).

Published studies with TOA technology
outside its origin in the U.5. have been in
Australia (Ryan and Gunn, 1993); Japan (Ishii
et al. (1992a,b); and the Netherlands (Janssen,
1988, 1989).

A major source of error for TOA systems is
the changes in waveform of the signal as it
propagates from the stroke location to the
different antennas. LPATS depends on an
accurate timing of the first waveform peak
after the signal crosses the threshold of the
sensors. Propagation of the signal effectively
moves the peaks in time relative to the
threshold crossing.  Thus, there is an
additional delay in detecting the arrival of
the peak beyond what it would take the peak
to reach the station had it not shifted. The
amount of distortion decreases with distance
from the lightning stroke. If possible, LPATS
does not use the time samples from the closest
receivers in the location solution process in
order to minimize this effect. The degree of
distortion, and the effect on location accuracy,
also depends on the conductivity of the ground.

Thus, Janssen (1989) has reported an average
location accuracy of 300 meters for an LPATS
system in Holland in a low lying, flat terrain
area with generally high ground conductivity.
On the other hand, Montandon (1992) has
reported location accuracies of several hundred
meters to 4.2 km for a system that is located in
Switzerland in a mountainous terrain area with
considerably lower ground conductivity. For
the same system, Casper (1991) has reported
location errors of up to 2 km, due primarily to
the enhanced propagation effects on the
waveforms of the signals.

An important factor determining network
efficiency is the attenuation of stroke signal
with distance. If the electric field strength of a
stroke is not large enough, or if the stroke is too
far to reach at least 4 antennas with an
amplitude above threshold, an unambiguous
location cannot be determined and the stroke is
lost to the system. ARSI tries to set up their
networks with fairly large antenna baselines
(200 to 400 km) in order to filter out cloud pulses
and to minimize the effect of widely varying
waveforms. That, and the requirement of
having at least four antennas detecting the
pulse, reduces the detection efficiency of the
system. Another situation reducing detection
efficiency occurs when a thunderstorm is
located very close to an antenna. In that case,
too many radio pulses from cloud lightning
could be detected, overloading the station's
processing capability (MacGorman et al., 1991).
In that situation, LPATS turns off the station,
thereby reducing the number of stations
available for the unambiguous detection of
lightning events farther away. On the other
hand, a factor tending to artificially increase
detection efficiency is the inclusion of cloud
strokes as part of the CG stroke population as
noted above. Janssen (1989) reported a detection
efficiency of 92% within the primary coverage
area of a 125-km baseline network in Holland.
Fisher (1992), however, is of the opinion that
some of the procedures employed by Janssen
appear to bias the predicted detection
efficiency in the optimistic direction. The
early evaluation of MacGorman and Rust
(1988a,b,c, 1989) suggested a detection
efficiency of between 40 to 55% of the CG
flashes. In addition, ARSI has calculated a
theoretical value of between 90 and 99%.



It should be emphasized that LPATS does
not discriminate between the first stroke of a
flash and strokes using the same channel
subsequent to the first. The position
information that is normally displayed by
LPATS systems is only provided for individual
strokes, whether they belong to the same flash
or not. If the user wants to be able to combine
all of the strokes corresponding to the same

flash, the time and distance clustering criteria
need to be specified for the subsequent strokes.
For example, a rule to construct a flash can be
established that a subsequent stroke is one that
occurs within 500 milliseconds of the first or
previous subsequent stroke, and is located
within 10 km of the first stroke of the same
flash (Casper and Bent, 1992).

/

Stroke
Location

Receiver 1

<€— Hyperbola Branch Defined

Receiver 2

by Time-of-Arrival
Difference

Ficure 4. Detection of a stroke by two TOA receivers. For a given time-of-arrival difference, the stroke
that emitted the signal could be located anywhere along one of the branches of a hyperbola that
passes between the two receivers and has as foci the two receiver locations.
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Hyperbola Branches
Defined by Time-of-Arrival
Ditferences

Receiver 2

Stroke Location

Receiver 3

Ficure 5. Detection of a stroke by 3 TOA receivers. Two non-redundant hyperbola branches are defined
whose intersection can define the location of the siroke (open circle).
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Ficure 6. Detection of a stroke by 3 TOA receivers.
two points (open circles); one corresponds to the

Tweo hyperbola branches are defined that infersect at
stroke position and the other dees nof.



D. TOTAL LIGHTNING DETECTION SYSTEMS

The French Office National d'Etudes et de
Recherches Aérospatiales (ONERA) has
developed a system that detects and locates
lightning discharges of all types in three
dimensions. The localization of electrical
activity is achieved by Very High Frequency
(VHF) electromagnetic interferometry. The
system detects and locates sources of VHF
radiation that are present in all types of
lightning discharges. The firm Dimensions, of
St. Aubin, France, manufactures and markets
the equipment Systeme d'Alerte Foudre par
Interferometrie Radioelectrique (SAFIR).
Origins of the French lightning detection
system using SAFIR technology can be traced
with Boulay et al. (1989); Richard (1990,
1991a, 1992); Richard et al. (1988, 1989, 1990);
and Kawasaki et al. (1992).

Lightning discharges emit electromagnetic
radiation over a large frequency spectrum. The
most intense radiation comes from the return
stokes of CG discharges at a low frequency
mostly below 1 megaHertz. Lightning
discharges, however, emit much more profusely
within the VHF band (roughly 30 to 300
megaHertz). In this and the Ultra High
Frequency (UHF) band, the signals consist of
isolated and short bursts of pulses with
durations ranging from a few hundred
microseconds to a few milliseconds. The typical
separation between pulses is about 50 to 100
microseconds. These radiation pulses come from
all portions of the lightning channels, both
during their formation as well as during the
current propagation along them. They are
principally due to fast transitions between low
and high conductivity phases of the lightning
channel plasma. Both cloud and CG strokes
emit these pulses during most stages of
development: preliminary breakdown, stepped
leader, dart leader, recoil streamers and return
stroke.
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SAFIR samples the highly impulsive elec-
tromagnetic signals in a VHF band with a time
resolution of 100 microseconds. Thus, the system
resolves the different lightning events as suc-
cessions of impulsive single point sources. The
total number of samples per lightning flash
ranges from a thousand to ten thousand for the
most active ones. The sources are localized in
three-dimensional space by the principle of in-
terferometry that is based on the measurement
of the phase difference of an incident plane
wave on a pair of electric field whip antennas.
Measured phase difference is a function of the
signal direction of arrival. Antennas are sepa-
rated from each other by about one meter. A
cluster of three antennas is necessary to obtain
both azimuth and elevation of the point source.

A basic SAFIR system consists of three de-
tection stations and a central processing station.
The distance between stations can be from 20 to
100 km. Each detection station contains three
electric field whip antennas that perform the
interferometric angular localization of the
signal sources. The central station performs the
final three-dimensional triangulation of the
signal sources and the main real-time display
of the information. Maps of the electrical
activity and other warning information are
then transmitted to remote display terminals.

Because of the very high frequency band
employed by SAFIR, signals are usually re-
ceived from lightning no more than roughly 200
km away; useful coverage is basically an area
of 150 km in radius. Typical spatial resolution
is 500 m within the network and 5 km at the
outer edges of the service area. Actual reso-
lution depends on system configuration and
relative position of lightning.

SAFIR also uses an electrostatic field mill
on the ground to detect the early electrification
of clouds that are developing at short range.



E.CONCLUDING COMMENTS

The SAFIR system can provide detailed
three-dimensional information on cloud and CG
lightning channels for a relatively small area
around a particular location or installation.

DF systems can provide highly accurate CG
flash locations with a high detection
efficiency over small areas with short-baseline
networks of 4 to 5 DFs. These systems can also
cover medium to large areas with networks of
DFs that are separated from each other by 100
to 300 km. Medium to high detection efficiency
and accuracy can be achieved, depending on
network configuration and the position of the
storms relative to the network. With the new
IMPACT technology, accuracies can be as high
as 500 meters within networks covered by
IMPACT sensors. . DF systems need to be
calibrated for site biases and, in some cases, for
waveform discrimination criteria.  This
requires collecting and statistically analyzing
data for a period of time before the calibrations
are incorporated operationally.  Usually one
thunderstorm season or a representative portion
of one season suffices.

TOA systems can cover medium to large
areas with networks of sensors located 200 to
400 "km apart. These systems provide
localizations of strokes with medium to high
accuracies and detection efficiencies depending
on network configuration, position of storms
relative to the network, and ‘the nature of the
topography over which the lightning signals
propagate. Within short-baseline networks
over flat uniform terrain, detection efficiency
and accuracy can be very high. TOA systems do
not discriminate between cloud and CG stroke
waveforms, and although there are features to
filter out cloud strokes, a considerable portion
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can still be accepted and reported. Presently,
there is no way to distinguish between the CG
and cloud strokes reported by the TOA systems.
Most of the cloud strokes that are not filtered
out are indistinguishable from positive CG
flashes. Presently, there is no procedure to
correct for the location biases due to
differential propagation effects on waveforms.

Comparative evaluations of results from
the DF and TOA lightning network methods
were made by MacGorman and Rust (1988a,b,c,
1989). It is important to note that such
comparisons apply to the networks as they
were configured at the time of the comparisons.

Lightning detection satellites are planned
to be deployed over the next few years. A first-
phase model is scheduled to be launched during
1994, and the fully-functional model a few
years later as part of NASA's Tropical
Rainfall Measuring Mission. The sensor was
developed by NASA and is an optical array of
charge coupled devices with electronics
capable of detecting light fluctuations from
lightning flashes at any time, including
daytime. From work with prototypes and high
flying aircraft, NASA estimates that the
systemn will detect 90% of all lightning that
occurs in daylight. Flash data will be collected
at each location in low latitudes twice a day in
bins that are smaller than 10 by 10 km. It will
collect total lightning, and not distinguish
between ground strikes and cloud lightning.
The flash information collected by this
satellite could prove to be wuseful to
meteorological services for real-time
monitoring of convection over tropical and
subtropical oceans and land masses.



A. NON-METE LOGICAL USES IN OPERATION

As real-time lightning detection networks
were established in the U.S. and many other
countries, the first two operational users
usually were forest fire detection agencies and
utility companies. These operational uses of
lightning network data have the ground strike
as the most important parameter.

* Forest fire detection

The application of lightning network data to
forest fire detection and monitoring for the
western U.S. and Alaska is described by
Krider et al. (1980). The Bureau of Land
Management (BLM) installed a real-time
lightning network for early detection of forest
and rangeland fires, and used network data
for significant cost savings. A main benefit is
eliminating initial searches for lightning
with reconnaissance aircraft or ground crews.
Also, the lightning network aids forecasting
and nowcasting by identifying lightning-pro-
ducing storms at an earlier stage in environ-
ments considered conducive to initiation and
spread of fires. In British Columbia,
Nimchuk (1985) emphasizes similar factors
of confirming lightning activity and correl-
ating with other weather parameters.
Lightning data are used in most provinces of
Canada for forest fire purposes. Latham
(1991) describes mainly positive flashes from
the anvillike plume of a deliberately-set
forest fire that were detected by a lightning
network.

o Utilities
At the time when networks were found useful
for fire detection, utilities also began
employing lightning networks for operations.
The Electric Power Research Institute (EPRI)
supported the installation and operation of a
U.S. national network. Real-time operations
for utility decision makers include crew
scheduling and dispatch, power load
management, and outage confirmation
(Orville et al., 1986a,b; Orville and Songster,
1987; Idone and Orville, 1990). Operational
network data uses for utility and communi-
cations companies are in Kozak (1987); White
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and Driggins (1990); Whitney and Asgeirsson
(1991), and Cummins et al. (1993). How
lightning networks perform for utility
operations has been studied in Canada
(Chisholm and Janischewskyj, 1988; Vera,
1989; Herodotou et al., 1992), Germany (Fister
et al., 1992), Sweden (Melin, 1991), and
Switzerland (Montandon, 1992).

Aerospace and military

1. Spacecraft operations

Lightning has major impacts on preparation
and launches of spacecraft. Christian et al.
(1989) describe lightning striking a rocket
during launch at the Kennedy Space Center
(KSC) in Florida. At KSC, studies for
improved lightning nowcasting and
forecasting have wused surface wind
convergence (Watson et al., 1987a, 1991a) and
neural networks (Frankel et al., 1990; Barnes
et al., 1991). SAFIR detection technology has
been employed at the European Space Center
on the Atlantic coast of French Guiana for
lightning warnings similar to those at KSC
(Richard et al., 1988; Boulay et al., 1989).
The Tanegashima Space Center in Japan uses
lightning detection network data for similar
purposes (Kingwell et al. (1991). Network
lightning is used to forecast and monitor range
safety at the White Sands Missile Range
(Ellison, 1992).

2. Military operations

Hunter (1988) developed synoptic-scale
predictors for network lightning at an Air
Force base for guidance on significant
thunderstorms that influence lightning-
sensitive activities. Fifth Weather Wing
(1988) describes how lightning data are used
by forecasters in the Air Force.

Explosives

The mining community makes lightning
warnings in areas where explosives and
munitions are used; a review of lightning
detection instrumentadion is in Johnson et al.
(1980, 1982). Network lightning data are
used to support activities at the NWS
Nuclear Support Office (Scott, 1989).



B. METEOROLOGICAL USES IN OPERATIONS

¢ Regional monitoring and forecasting
at central offices

Two central forecasting offices for sur-
veillance, nowcasting, and forecasting of con-
vective weather over large regions have
made operational use of network flash data.
They are the National Severe Storms Fore-
cast Center (NSSFC), National Weather
Service, NOAA in Kansas City, and the
Bureau of Meteorology for eastern Australia.
Responsibility areas of these facilities
exceed the range of a single radar. NSSFC
has used flash data for several years
(Edman, 1986; McCann and Matthews, 1989;
Mosher, 1989; Lewis, 1989).  Uses of flash
data at NSSFC are in Mosher and Lewis
(1990); many of the same uses for Australia
are in Ryan and Gunn (1993}, Results of these
papers (called ML and RG) emphasize the
following:

1. Most frequent applications

ML list eight aspects of convection that
lightning data depict well; RG reiterate
many of them (Figure 7},

Existence: The presence of lightning, and
thereby thunderstorms, is wusually the
highest-ranked use.

Initiation: Lightning is often the first
indication of the existence of 4 new storm.
Movement: Animation and looping of
lightning maps easily follow the progress of
individual storms.

Dissipation: It is important to know when a
storm has ended, and sometimes difficult to
determine. The end of lightning is a good
indicator that deep convection has ended.
Configuration: Whether the storpi is in-a line,
a series of isolated cells, or in diffuse
organization is easily found with flashes.
Coverage: Especially on a scale larger than a
single radar's scan, lightning clearly
indicates locations of active storms within
larger areas on satellite and radar.

Intensity: The trend of flash rate through
time, especially at the start and end of a
storm, can indicate the stage of the storm's
life cycle. Thresholds of absolute numbers of
flashes have not been found helpful so far in
an operational situation.

Redevelopment: When and where flashes
restart in a subsequent phase of a storm can
help forecasters monitor the situation.
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2. Timeliness

ML and RG found that when lightning data
are available immediately, forecasters will
access the data most often on the scale of
seconds up to a few minutes (Figure 8).
Lightning data were available for both of
the studies described in ML and RG within a
few seconds, since communications were made
between the forecast offices and the
network's central computer. In these and
many other networks, satellite
communications provide part or all of the
data path. However, if the flash
information is ransmitted on fixed schedules,
the delay may be as much as 15 minutes. In
general, individual and volume radar scans
are collected at less than 5-minute intervals.
However, in practice, the radar data
frequently are available to forecast offices
over large regions only at 15-minute
intervals, and some further delays may occur.
3. Comparisons to other data

For monitoring significant or severe weather,
ML and RG report that forecasters often con-
sider lightning data to be a better source of
the existence of convection than radar returns.
ML report that lightning data contributed
unique information about the convective sit-
uation in 26 to 74% of the cases. RG report
lightning data were important to forecasting
convection during 80% of the shifts. Also,
lightning provided the first notice of a thun-
derstorm on 58% of the shifts when convection
occurred (Figure 9). RG describe the most
frequent lag as 60 minutes between first light-
ning detection and first thunderstorm
observation from other data; other data
sources include surface observations, radar
and satellite observations, and storm spotter
reports.

4. Changes to forecasts

RG report that lightning data were used to
amend forecasts in 14% of the cases.
Lightning-triggered changes were most
common during shifts when the forecast was
incorrect. When the forecast was correct,
lightning data were used to refine location
and /or timing of convection forecasts. Also,
the Australian forecasters often monitored
the lightning data stream to be sure that no
unexpected convective storms had recently
formed.
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Ficure 7. Eight most common utilities of flash data at NSSFC as ranked by forecaster at end of
shift. Rank of 4 is most useful; 0 is not applicable and not used in calculations (from Mosher
and Lewis, Preprints, 16th Conference on Severe Local Storms and Conference on
Atmospheric Electricity, 692-697, 1990, American Meteorological Society).
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Ficure 8. Frequency of lightning data usage by NSSFC forecasters during their busiest shift
periods (from Mosher and Lewis, Preprints, 16th Conference on Severe Local storms and
Conference on Atmospheric Electricity, 692-697, 1990, American Meteorological Society).
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Fioure 9. Proportion of shifts when lightning data were used, depending on whether or not
convection was forecast or observed, and when the forecasts were correct or incorvect
(from Ryan and Gunn, Preprints, 17th Conference on Severe Local Storms and
Conference on Atmospheric Electricity, J40-J44, 1993, American Meteorological Society).
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e Monitoring and forecasting
at local stations
Lightning network data have been used
operationally at local weather stations for
two situations. One situation was in the
western U.S., where scarce radar data made
lightning a popular dataset at most stations
when it was introduced, and the other is at
various stations outside the west.
1. Western United States
The Bureau of Land Management (BLM)
deployed their lightning detection network
in the western United States (Section 3A) for
forest and range fire detection and warning.
Shortly afterward, the National Weather
Service of NOAA accessed the BLM lightning
data for its operations at many local stations
in the western third of the country. Uses of
lightning data in this region are in Western
Region (1982, 1985, 1989); Kea and Fontana
(1980}; Todd and Labas (1982); and Rasch and
Mathewson (1984), Mielke (1990) lists these
1easons fm‘ use of flash data in the region:

dar coverage: Coverage currently is poor in
‘ﬁﬁhe wes%em . 5. The area will continue to
have gaps when deployment of the new radar
systems in the U.5. is completed.
Terrain; The mountainous terrain throughout
the western states blocks radar signals in
mary sectors.
Surface observations: Relatively few surface
sites have been located in the western U.S.,
although improvements will come from
aummated systems.
Fire s Since most of the western states
is sema~amd or arid, many weather stations
have fire weather forecast responsibility.
Lightning is a major cause of forest and range
fires in the region.
Conveclive weather forecasting: Severe
thunderstorms, tornadoes, flash floods, and
microbursts are problems in the west, but
storms are often less intense and frequent than
in some parts of the U.S.
To provide localized lightning information to
operational forecasters, lightning alerts can
be defined as needed by the forecaster
(Mielke, 1990). The alert is generated at the
regional computer facility and transmitted to
the designated office. Another option
provides a listing of individual lightning
strikes around a user-specified location and
time window. A recent example of lightning
data available in real time is in Table 1.
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Tape 1. Type and frequency of lightning products
generated by Western Region, National
Weather Service (Mielke, 1990).

Graphics
30-minute contours 30 minutes
30-minute individual positive flashes
30 minutes
3-hourly contours 2 hours
24-hour confours 12 hours
72-hour count versus time 8 hours
7-day contours 24 hours
7-day count vs. alarm/alert warning
As needed
Alphanumeric
30-minute regional 30 minutes
24-hour regional 12 hours
Alarm/alert warning As needed
Dial-in users
30-minute regional 30 minutes
24-hour regional 12 hours
3-hour regional 2 hours
7-day regional 24 hours

2. Additional stations

Other stations have wused flash data in
nowcasting and forecasting projects.

Forecast offices: Gerwitz (1987); Biedinger

and Stern (1989); Struthwolf (1989); Rickard
(1991); and Sabones and Sharp (1991) describe
operational uses of flashes in different local
forecast offices to determine whether a con-
vective cell is a thunderstorm, and the use of
positive flashes to identify the life cycle of
thunderstorms. Real-time flashes comple-
ment radar and surface observations for
aviation and public forecasts and warnings in
areas with gaps in radar coverage. Juvanon
du Vachat and Cheze (1993} describe a pilot
nowcasting program for Paris combining CG
and total lightning.

Aviation: Ewald (1987) describes uses of flash
data at a facility that provides thunder-
storm advisories on the scale of 30 to 120
minutes; flashes are considered a valuable
supplement to radar and satellite data.
Lightning data are used at NSSFC for advis-
ories of in-flight thunderstorms that are haz-
ardous for aviation (McCann and Matthews,
1989); uses by NSSFC were in this section B.
Lyons et al. (1989¢) list features of flash data
for aviation: directly identify thunderstorms,
provide wuniform and wide coverage,
available in real time, simple to interpret,
easy to animate, and warn ground crews.



C.FLASH CLIMATOLOGIES

Climatological features of cumulus
convection are especially well suited for
research with lightning data. It is
particularly important for meteorological
applications to understand the relationships of
deep convection to mountains and large water
bodies. Flash information is compact and
appears to be unaffected in any significant way
by topography. Lightning data are easier to
process and manipulate than radar and
satellite information for large areas and long
periods. Note that the presence of lightning is
the only parameter being measured; weaker
convection not producing lightning also appears
on radar scans and satellite imagery.

Climatological distributions of convec-
tion have been specified with lightning data in
the following list and Table 2 showing the
regions, seasons, and studies:

e The largest area covered by a lightning
climatology based on real-time network
data is the continental United States
(Orville, 1991a). Further discussions of the
calculation methods are in Orville (1993)
and Smith (1993).

e The subtropical peninsula of Florida during
summer according to relationships with
coastlines and synoptic-scale flow regimes
at several levels of the atmosphere (Maier
et al., 1984a; Lopez and Holle, 1986; Reap,
1993).

e The arid to semi-arid state of Arizona
during the summer months (Watson et al.,
1994b) by time of day and year.

e The mountainous western two-thirds of the
U.S. during summers of two years (Reap,
1986).

e The states of Kansas and Oklahoma by
time of year and day, and location within
these states (Reap and MacGorman, 1989;
MacGorman et al., 1993b).

o Portions of the eastern United States
(Orville et al., 1987; Orville, 1990b); the
second study was during winter.

e The mountainous state of Colorado, (Lépez
and Holle, 1986).

e The state of Alaska during summer (Reap,
1991).
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Tasre 2. Number of flashes, months, and years
included in published climatologies of flashes

(see text).
Area
Flashes Months/years Reference
Entire United States
13,400,000 12/1 Orville (1991a)
Florida
140000 3/1 Maier et al. (1984a)
233000  8/1 Lépez and Holle (1986)
6,166,612 28/4 Reap (1993)
Arizona

3,817,000 24/6 Watson et al. (1994b)

Western United States
2,180,000 12/2
Oklahoma, Kansas
1,918,000 12/2
Reap & MacGorman (1989)
301,727 13/2 MacGorman et al. (1993b)

Eastern United States

Reap (1986)

720000 1272 Orville (1987)
150,000 2/1 Orville (1990b)
Colorado
104,000 12/1 Lépez and Holle (1986)
Alaska
82000 15/3 Reap (1991)

These climatologies typically include:

e Time of year of lightning, usually shown by

monthly distributions (Figure 10).

Time of day of lighining (Figure 11).

Horizontal maps of lightning; a grid of

various types is developed that depends on

the size of the region (Figure 12).

e Maps by time of year or time of day (Figure

13).

A wide variety of types of studies can be
performed for regions with lightning data over
a sufficiently long period, preferably for more
than one summer or other season. For example,
Westcott (1993) found that flash densities were
somewhat higher over and downwind from 19
large cities in the central U.S. than upwind of
the cities.



Number of Flashes (Millions)

Ficure 10. Time of year of cloud-to-ground lightning during 1989 over
United States (from Orville, Monthly Weather Review, 119, 573-
577,1991, ©American Meteorological Society).
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Ficure 11. Time of day of first, maximum rate, and last cloud-to-ground lightning
in summer of 1983 over Colorado (from Liopez and Holle, Monthly Weather
Review, 114, 1288-1312, 1986, American Meteorological Society).
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Ficure 12. Maps of cloud-to-ground flash density (flashes per square km) over Oklahoma and Kansas in 1985
Flashes lowering negative charge on left, and positive on right. The grid

and 1986 warm seasoms.
employed is 48 by 48 km (from Reap and MacGorman, Monthly Weather Review, 117, 518-535, 1989,

American. Meteorological  Society).
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Ficure 13. Variation of cloud-to-ground lightning versus time (UTC) across south Florida. Top of each 40 by
100-km rectangle shows number of flashes (from Maier, Krider, and Maier, Monthly Weather Review,

112, 1134-1140, 1984, @American Meieorological Society).
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D. STORM-SCALE RESEARCH

Lightning detection networks have been
used by meteorologists in a wide range of
research on thunderstorms. Due to the emerging
nature of studies, some research has only been
presented in informal literature.

o Casualties and damage

Cloud-to-ground flashes from a Florida net-
work were composited around locations of
lightning deaths, injuries, and objects
damaged on the ground (Holle et al., 1992,
1993). People were victims more often at the
end and start of thunderstorms, compared to
the middle. Lightning rates at the time of
casualties were weak to moderate. Structures
and other objects were struck more in the
middle of storms with higher flash rates
than for people.

¢ Flash floods

Cloud-to-ground lightning data were used by
Kane (1990} to study a flash flood in Ohio
associated with a mesoscale convective
system (MCS); lightning data gave location,
movement, redevelopment, merging, and
propagation of convective cells and clusters.
Lighining detection graphics similar to those
in Table 1 located a maximum in flash counts
that preceded flash flooding in Las Vegas,
Nevada by about an hour (Cylke, 1992).

e Hail

In Oklahoma and Kansas, storms with large
hail typically produced high densities of
positive flashes (Reap and MacGorman,
1989). Hailstreaks in Illinois were always
closely associated with CG lightning
(Changnon, 1992). Lightning seldom occurred
where the hail fell, instead it formed and
moved in a 10- to 15-square km area on either
the left or right forward flanks of
hailstreaks.  Hail severity was well
correlated with the flash rate. Lightning
centers developed 9 minutes before hail and 5
km backward along the storm's track from
first hail, then lightning diminished shortly
after hail ended (Figure 14). In Oklahoma
and Illinois (MacGorman and Burgess, 1994),
large hail was reported when positive ground
flashes dominated, then the frequency and
diameter of hail decreased after CG flashes
switched mainly to negative.
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e Hurricanes
‘Lightning is not commonly observed in hur-

ricanes. However, bursts of lightning have
been observed during several tropical storms
and hurricanes during explosive convective
development near their circulation centers, or
in some of the outer or spiral rainbands as
intense updrafts inject supercooled water
above freezing levels (Black et al., 1986;
Venne et al., 1989; Lyons et al., 1989b; Roohr
and Vonder Haar, 1992). Lascody (1992}
reports a circular pattern in the few lightning
flashes observed by a detection network as
hurricane Andrew's eye crossed the warm
Gulf Stream of south Florida.

Low-precipitation thunderstorms
Low-precipitation (LP) thunderstorms have
little or no rain at the surface, but may
produce large hail and. weak to moderate
tornadoes. They typically develop near a
dryline and have a single strong updraft, but
no surface downdraft.  Mainly posifive
flashes occur during the LF phase (Curran and
Rust, 1992; Branick and Doswell, 1992), then
more negative flashes occur as the storm
splits or merges with other storms.

Mesoscale convective systems
Mesoscale convective systems (MCS) and
mesoscale convective complexes (MCC)
sometimes produce as many as 40,000 or more
CG flashes during their lifetime. They often
have higher ratios of positive flashes than
smaller convective weather systems. Time
series of CG flashes were compared to radar
and aircraft overflight information by
Goodman (1983}, and to satellite-based life
cycles by Goodman and MacGorman (1986)
and Lopez et al. (1990b); MCCs can have
flash rates over 3000 flashes per hour or 60
flashes per minute (Figure 15). CG lightning
in MC5s has been related to rainfall (Nielsen
et al., 1990; Holle et al., 1994), radar (Kane,
1993); and severe weather (McCollum and
Maddox, 1993). Network CG strikes have
been related to MCS microphysical and
dynamic structure, and electrification
processes (Rutledge and MacGorman, 1988,
1989; Rutledge et al., 1990, 1993; Schuur et al.,
1990, 1991; Keighton et al., 1991; Hunter et
al., 1992).



e Microbursts

Lightning-microburst studies have
emphasized time scales of minutes, since
downbursts and microbursts are short-lived
storm-scale phenomena (Williams et al.,
1989a). CG lightning can typically identify a
microburst (Buechler et al., 1988} through
time trends in positive ratios and total
flashes. However, to detect. precursors to
microbursts of up to 10 minutes or more for
airport operations, systems that detect both
cloud and CG flashes such as SAFIR have
promise (Goodman et al., 1988c, 1989;
Buechler et al., 1988, 1989; Laroche et al.,
1991a,b). - Microbursts derive from parent
clouds with tops colder than freezing, thus
they have an ice phase and some lightning
(Williams, 1990). Microbursts that occur in
dry environments  typically have fewer
flashes than those in moist environments.

Positive/negative polarities

Networks with the capability of detecting
CG flashes lowering positive charge to
ground became available in real time during
the 1980s. Most lightring-network studies
now include the positive-flash component in
their analyses or have positive flashes as
their principal component (Engholm, 1988;
Brock, 1991). - Thunderstorms starting with
more flashes lowering negative charge to
ground (Figure 16}, and ending with higher
ratios of positive flashes were documented by
Orville et al. (1988} and Stolzenburg (1988),
and discussed by Hill {1988).  As mentioned
earlier, MCSs have higher positive flash
ratios in the stratiform regions late in their
life cycle (Lopez et al., 1989¢c; Rutledge et al.,
1990; Holle et al., 1994).. In contrast, there
are more positive flashes early in the life
cycle of most low-precipitation storms
(Curran and Rust, 1992; Branick and Doswell,
1992), some severe storms. (Helsdon, 1990),
and some tornadoes and supercells
(MacGorman et al.,, 1989; Knapp, 1992a,b;
Seimon, 1993; MacGorman and Burgess, 1994
later in this section). For most nonsevere
thunderstorms, positive flashes are
associated with weaker reflectivity than
negative CG flashes (Lépez et al., 1989¢;
Reap and MacGorman, 1989; MacGorman and
Nielsen, 1991). How flashes of both
polarities relate to VIL and echo tops is
shown by Watson and Holle (1994).
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e Radar echoes

Lightning does not necessarily coincide with
highest radar reflectivity, but the data are
complementary. This summary of radar-
lightning comparisons proceeds from larger to
smaller scales. - Results differ due to
variations. between storms, or between
analysis intervals in space and time.

1. One hour or more

During heavy rain lasting several days in
summer over Alaska, Fathaver (1984) found
CG lightning on the fringe of the raining
clouds. In Massachusetis, most flashes were
ahead of intensifying cells in a squall line of
weak echoes (Geotis and Orville, 1983). - For
storms over an hour, rain volume per flash in
Florida decreases as buoyancy increases
(Buechler et al., 1990; Goodman -and
Buechler, 1990; Buechler and Goodman, 1991).
Similar relations with instability were found
for Florida (Lopez et al., 1991a) and
Australia (Rutledge et al., 1991). - Hourly
data in Oklahoma and Kansas (Reap and
MacGorman, 1989) and the western USA
(Reap, 1986) show that when maximum point
reflectivity increases in a 48-km grid square,
the probability of two or more CG flashes
increases (Figure 17). Many grid squares had
flashes with peak reflectivities below 40
dBz, although this level is used to identify
thunderstorms. Over Florida, morning and
night echoes have rain but few flashes,
while afternoon rain is the inverse (Lépez et
al., 1986).

2. Less than one hour

Comparing lightning and radar ‘data on
scales of a few minutes and km, the most
frequent base-scan reflectivities with
lightning are around 40 dBz. In Florida
(Figure 18), few CG flashes were at
reflectivities above -50 dBz, and flashes
decrease below 40 dBz (Holle et al., 1983,
1984; Watson et al,, 1989b). In Colorado,
storms with moderate echoes produced more
negative flashes than storms with high
reflectivities that alsc have more positive
flashes (Lopez et al., 1990a). In Michigan,
Kane (1993) shows lightning relative to
reflectivity at several levels. In Oklahoma,
Watson and Holle (1994) showed that
lightning presence was most often associated
with weak Vertically Integrated Liquid
values in a squall line on a 4-km grid per 5
minutes.



* Rainfall

Few studies have compared rain from gauges
to network flashes. In Sweden, the ratio of
positive to total flashes from a network
decreased with more precipitation from
gauges (Murty et al., 1983). Over New
Mexico, heavy rain began at the time of peak
lightning, and maximum rain occurred 45
minutes after peak lightning (Ellison, 1992).
Over Arizona, days with measurable
precipitation related well (Figure 19) with
lightning (Watson et al., 1994b); note that
these results do not show amount, but presence
of any rain on a day.

Small thunderstorms

The lightning threat from small but common
thunderstorms is important for warning and
safety issues, in view of the casualty and
damage results mentioned earlier. In Florida,
the mean distance between successive CG
flashes in a small thunderstorm ranged from 3
to 4 km (Krider, 1988). For Kennedy Space
Center operations, the lightning hazard from
small storms is a major problem (Nicholson et
al., 1988).

Squall lines

In a squall line in Massachusetts, a detection
network located lightning in the forward
peripheral regions rather than in or near the
cores (Geotis and Orville, 1983). Many squall
lines also have an earlier stage with severe
weather and/or a trailing stratiform region
later in the life cycle. For example, Nielsen
et al. (1994) describe lightning in a squall line
in Kansas and Oklahoma that began by
producing severe weather and high positive
flash ratios, then the positive ratio
decreased, and finally the ratio increased
again as the trailing stratiform region
developed. Network lightning data were
used by Rutledge et al. (1991) and Schuur et
al. (1991) to study electrification in the
trailing stratiform region behind squall lines
near Australia and in Oklahoma. In an
Oklahoma convective line with severe
weather, network lightning of both
polarities was related by Watson and Holle
(1994) to VIL and echo tops on small scales.
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e Thunderstorm observations

There are two motivations for comparing
lightning network data with human

‘observations of thunder.

1. Thunder-day climatologies

One motivation is to replace thunder-day
climatologies, the number of days with
thunder at a site. Thunder days have long
been used for design and protection of ground
facilities. The latest thunder-day, thunder
event, and duration data for the USA are by
MacGorman et al. (1984a). Changnon et al.
(1988) found that values of thunder events do
not relate well to CG flash frequencies from
networks, and actual storm activity is
underestimated by thunder day and event
records. Reasons include: observers not
hearing the thunder from the lightning
observed by the network, the inverse, the
tendency for lightning distributions to be
skewed during thunderstorms, and location
errors in detection systems. Changnon (1989)
compared thunder observations with CG
network flashes in the United States (Figure
20) although general trends exist, relation-
ships are not uniform between regions. Errors
are considered minimal in the flash data, but
errors in thunder events are sizable. Clodman |
and Chisholm (1993) emphasized that a few
storms can dominate lightning samples.

2. Automatic thunderstorm identification

The other motivation for comparison studies
is to use lightning networks for thunderstorm:
identification at automatic weather stations.
McNulty et al. (1990) address operational
issues in human versus network detection of
thunderstorms. Reap and Orville (1990)
related human observer records and CG
network data in the northeast USA. Storms
were detected by both methods during less
than half the time with a 16-km search
radius, compared to 82% within a 50-km
radius. Reap (1992) compared observer
records and CG lightning network data. As
lightning frequency increased, the
probability of the thunderstorm being
detected by both methods also increased.
And, as the radius of search with the
lightning data increased, the human observer
was more likely to hear the storm.




¢ Thunderstorm tops

As top heights increased for Florida storms
(Holle and Maier, 1982), the probability of
lightning within 5 minutes and 10 km of the
radar top measurement increases from 10% for
tops under 9 km to 100% over 17 km. Ina very
large MCS over Michigan and adjacent Great
Lakes (Kane, 1993), the largest area of echo
tops above 14 km peaked an hour before the
maximum 10-minute CG flash rate. In
Oklahoma, lightning was most often
associated with radar-measured tops in the
25,000~ to 45,000-foot range within 4 km and 5
minutes of radar measurements (Watson and
Holle, 1994).

Tornadoes and severe weather

1. Case studies

In the northeastern U.5., peak lightning rates
preceded tornadoes by 10 to 15 minutes, then
CG rates declined {Kane, 1991}, Much of the
recent severe-storm research has shown more
positive flashes before and during tornadoes
and severe storms than afterwards. During a
very strong tornado in Oklahoma, positive
flash ratios were high throughout the storm;
cloud lightning measured by other sensors was
inversely correlated with network-measured
CG flashes; and CG flash rates were
negatively correlated with cyclonic shear of
the parent mesocyclone (MacGorman et al.,
1989). For another Oklahoma tornado,
positive CG flashes started just before, and
reached a peak during the tornado stage
(MacGorman and Nielsen, 1991). In a severe
thunderstorm in North Dakota, there were
mostly positive flashes during the first 1-2
hours of several cells (Helsdon, 1990). On
the northern Great Plains, low-precipitation
supercell storms showed a positive-flash
signature, but storms to the south with heavy
precipitation had mainly negative flashes
{Branick and Doswell, 1992). In. Illinois,
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mostly positive CG flashes occurred near the
storm's reflectivity core before a very strong
tornado (Figure 21), followed by a lull in
lightning during the tornado, then a reversal
to mostly negative flashes (Seimon, 1993). In
Oklahoma and Ilinois, MacGorman and
Burgess (1994) show a polarity reversal in a
classic supercell storm before it became a
heavy-precipitation supercell storm (Figure
22); while storms with high positive CG
flash rates are more likely to produce severe
weather than storms without high positive
rates, severe weather also occurs in storms
dominated by negative {lashes. The
positive-flash signal was used at a television
station in Oklahoma to help identify and
warn of a strong tornado (Shore and Lane,
1993).

2. Large samples

Hourly CG flashes were correlated with
severe storms in 48-km grid squares over
Oklahoma and Kansas (Reap and
MacGorman, 1989). For the rare times when
positive flash rates exceed 30 per hour in a
square, the probability of severe weather,
becomes significant. In contrast, negative
flash rates can exceed 200 per hour before
reaching the probability of severe weather
shown by positive rates of 30 an hour. A
forecasting technique for severe and tornadic
storms across the United States by Knapp
(1992a,b) targeted thunderstorm cells that
were dominated by positive CG strikes.
When a region was identified by synoptic and
mesoscale analyses as having a severe
weather threat over the next few hours, and
positive-dominated storms were identified on
lightning maps, the location subsequently
had severe weather or tornadoes more than
half the time. Positive flashes dominated
about one-fourth of all severe thunderstorms.
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during one houy on 22 February 1987 along the Gulf of Mexico coast of the USA
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E. ADDITIONAL RESEARCH

e Coasts and lake shores

Network data were used to develop lightning
climatologies of the sea breeze zones over
Florida by Maier et al. (1984a) and L6pez and
Holle (1986). Lightning data have also been
used for verification of numerical model
forecasts of the Florida sea breezes (Lyons et
al., 1987, 1992a,b; Lyons and Pielke, 1988).
Both lightning and model data were
combined to study the Florida sea breeze by
Lyons et al. (1990). High lightning activity
has been found in rainbands over the warm
Gulf Stream (Figure 23) off the east coast
during northwesterly offshore flow during
winter (Biswas and Hobbs, 1990; Orville,
1990b, 1993; Dodge and Burpee, 1993). Low
frequencies of positive flashes were found by
Moore and Orville (1990) at the downstream
ends of the Great Lakes.

Complex terrain

Lightning was not found preferentially at the
highest altitudes, but on the slopes of
mountains and ridges facing the low-level
moisture flow using lightning data on a grid
scale of 11 by 14 km in Colorado (L6pez and
Holle, 1986). However, in the western u.s.,
using a grid scale of hundreds of km, lightning
was found to be directly over the highest
terrain (Reap, 1986).

Monsoon convection

During the summer monsoon along the north
coast of Australia, CG lightning data were
used to study deep convection and electrical
features of squall lines during a field project
by Williams and Rutledge (1990); Williams
et al. (1990); Rutledge et al. (1991); and
Williams (1991). Cloud-to-ground lightning
data were used by Watson et al. (1994a) to
study synoptic patterns that cause lightning
variability during the monsoon over the
southwestern United States and northwestern
Mexico during summer and early autumn.

Numerical models

Lightning data identified convection during
the deepening of a midlatitude cyclone that
was handled poorly by operational numerical
models (Orville et al.,, 1983a). For
Oklahoma and Kansas, analyzed fields from
two synoptic-scale models showed that of
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many possible variables, surface vorticity
and strong upward vertical motions were
better related to CG lightning than freezing-
level height and vertical wind shear (Reap
and MacGorman, 1989). Over Alaska, Reap
(1991) used a synoptic-scale numerical
model's daily output to relate to CG
lightning; the best correlations were with
large-scale static instability, and local wind
maxima or moisture convergence. Mesoscale
numerical models were used in an operational
test to forecast network-detected flashes in
Florida sea breezes (Lyons et al., 1987,
1992a,b; Lyons and Pielke, 1988).

Satellite imagery

1. Case studies

In British Columbia, the greatest lightning
concentration was directly underneath or
close to coldest (highest) infrared cloud tops
and cellular convection on visual imagery
(Jackson, 1982). In Oklahoma, CG flashes
were in a relatively narrow line under the
coldest infrared cloud tops compared to the
entire cloud system on satellite (Orville et
al., 1982). In the central U.S., Roohr and
Vonder Haar (1992) found a sharp peak in
flashes related to satellite infrared
temperatures for a 5-minute period of a well-
defined north-south cold front.

2. Large samples

In the western U.S., Reap (1986) compared CG
lightning in a 48-km square grid on 101 days
to satellite data. There was a sharp peak in
lightning activity within a narrow range of
high visible-cloud brightness. The
distribution of lightning strikes as a function
of infrared cloud-top temperatures was
similar (Figure 24). For the southeastern
U.S., Goodman et al. (1988a) found convective
tendencies from a combination of 5-minute
infrared satellite temperatures and CG
flashes. Better short-term storm trends were
provided by the combination than by infrared
temperatures alone, except for mesoscale
convective systems due to their large cirrus
shields. In the western U.S., satellite data
were used to estimate the ratio of cloud
flashes to cloud-to-ground flashes (Price and
Rind, 1993a).



e Synoptic influences

1. Upper-air soundings

In south Florida, differences in the local
vertical profiles of temperature, wind
direction, and moisture from morning
soundings were related to changes in
frequency of CG flashes (L6pez et al., 1984).
In central Florida, the locations and
frequencies of flashes were strongly
influenced by the low-level flow direction
from upper-air soundings (L6pez and Holle,
1987a,c). In Alberta, lightning that occurred
later in the day was rather weakly
correlated with convective instability, low-
level moisture, and surface heating in the
morning upper-air soundings (Anderson and
Charlton, 1990).

2. Synoptic patterns

For coastal California where CG flashes are
relatively rare, a temperature of -20°C at 500
millibars on the local sounding was
somewhat indicative of lightning; expanding
the study to include synoptic conditions gave
limited success in a prototype study (Hunter,
1988). During the southwest U.S. monsoon,
Watson et al. (1994a) associated high and
low daily CG flash frequencies with
corresponding average surface and upper-air
flow regimes.

Tropical and subtropical convection
Uses and characteristics of lightning network
data in tropical and subtropical regions have
been described earlier in Operational Uses
(Section 3B), Flash Climatologies (Section
3C), Storm-scale Research (Section 3D), and
this section on Additional Research (Section
3E). Almost all of the studies have been done
for Florida, except for the monsoon convection
studies in the Australian region.
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e Winter weather

1. Eastern U.S. coast

More winter lightning studies have been
conducted for the region off the east coast
than any other location. Williams (1988)
found mostly positive flashes in a long
precipitation band; positive CGs did not
cluster at a scale comparable to the size of an
isolated thunderstorm cell as they do in
summer. Biswas and Hobbs (1990) and
Orville (1990b) described lightning over the
Gulf Stream (Figure 23). Dodge and Burpee
(1993) found that 99% of the CG lightning
was detected during rainband cases, which
are defined as at least 90 km in length and
last 2 hours or more; the rainbands were most
often in the warm sectors of fronts.

2. Other locations

During mid-winter in Florida, Williams et
al. (1989c) describe the complex nature of CG
flashes detected by a network as a front
passed through the area. To the west of, and
over portions of Japan, lightning-producing
convection forms during winter as cold
continental air flows across the warmer ocean
on the way to Japan. Goto et al. (1992) found
fewer negative flashes in winter, and
attributed this to low cloud tops.
Characteristics of the flashes were more like
those of the mature and/or dissipating stages
of summer thunderstorms. During an intense,
wide-spread snowstorm over the eastern U.S.,
Orville (1993) found very high CG flash
rates, and positive flashes accounted for 13%
of all flashes from the storm. Peak flash
rates occurred in the warmer air to the south
during the growth stage, then the positive
ratio exceeded 60% to the north as lightning
from the storm ended.



ATLANTIC

b i'z/

) Yarar OCEAN
2 l 140 2?;40 4020 o 300 kim
¢

Ficure 23. Isopleths of the number of CG flashes per day off the 5. southeast
coast from 15 Jenuary to 15 March 1986. Mean location of Gulf Stream was

within dashed lines (from Biswas and Hobbs, Geophysical Research Latiers,
17, 941-943, 1990, @American Geophysical Union).

RELATIVE BRIGHTNESS
0 10 20 30 40 50
24 ; T ; T g ¥

iy
&
H

PERCENT OF STRIKES
R
H

&
¥
AN
N
\.;Z’e%%

g &
@@ e
@

e
£
PR t X
o O
e :
®°"

0 et

[ | 3 i

A A f, B s
40 30 20 10 O ~10 ~-20~30-40~50-60-70
MINIMUM INFRARED TEMPERATURE (°C)

Fieure 24, Distribution of lightning strikes during daylight hours of tu
a function of satellite-based minimum infrared cloud-lop e
relative visible brightness (from Reap, Journal of Climate arid
eorology, 25, 785-799, 1986, American Meteorological Society).




LE FLASH MAPS F

F.S

LIGHTNING NETWORKS

A variety of meteorological situations is
shown by the following set of flash maps
detected by lightning networks.

o Warm seasons

Flashes over most states, and parts of Canada
and Mexico are in Figure 25 on a sumnmer day.
A total of 43,776 flashes were detected from
2129 UTC on 01 August to 1257 UTC on 02
August 1989. Cloud-to-ground flashes are
found over the mountainous western states in
association with the monsoon, across lower
latitudes with abundant low-level moisture,
and across the northern regions associated
with traveling upper-air disturbances. On
another summer day (Figure 26), a connected
line of flashes extends from Mexico to Canada
from 1917 UTC on 25 August 1o 1248 UTC on 26
August 1993. The 44,975 flashes are mainly
along a front, over elevated terrain of the
intermountain western states, and in moist air
over the southeastern states.  Over Florida,
lightning in Figure 27 locates sea breezes on
the east and west coasts for 24 hours ending at
2141 UTC on 08 August 1990. Over central
Florida, Figure 28 shows individual light-
ning-producing storms for 24 hours ending at
2234 UTC on 6 May 1991.

¢ Mesoscale convective systems

In late spring, flashes were organized into
several large MCSs. Figure 29 shows the
flash-by-flash depiction of 44,991 flashes in
the area, while Figure 30 shows the same
flashes in an operational contour data pre-
sentation from 0212 to 1451 UTC on 05 June
1992. A single MCS moving northwest to
southeast is in Figure 31. There were 20,186
flashes during the 24 hours ending at 0128
UTC on 22 May 1989,

e Cold seasons

In late winter, the lightning map in Figure 32
shows three separate areas of synoptic-scale
forcing that are strong enough to produce
lightning from thunderstorms. For this map,
there were 868 flashes across the United
States during the 24-hour period ending at
1501 UTC on 5 March 1990. One area of
forcing is over the western states, one is over
the central plains, and one is leaving the
southeast coast. Another interesting feature
is that lightning has been observed by
detection networks to be organized on large
scales and in orientations that were not
previously known from surface stations and
other available datasets. A straight east-
west line of flashes located along a warm
front over the southern Great Lakes region is
shown in Figure 33. The time period is for the
24 hours ending at 1343 UTC on 17 April 1991.
Another day with numerous long lines
occurred during the 24 hours ending on 21
December 1990 at 1548 UTC (Figure 34). It
has been observed that large areas with
large numbers of flashes during colder months
of the year can indicate significant weather.
Figure 35 shows 44,080 flashes during a
portion of a major outbreak of tornadoes, wind
and hail across the southeastern U.S. states
during the period from 1600 UTC on 15
November to 1357 UTC on 16 November 1989.
On the previous day, there were 14,500
flashes associated with this synoptic-scale
system to the west of the area on this map. A
north-south cold front in the middle of the
United States, and an east-west warm front
across the southern Great Lakes are both
apparent in the map of Figure 36. For this
map, a total of 19,517 flashes was detected
from 1942 UTC on 10 March to 1441 UTC on 11
March 1990.
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Ficure 25. Map of 43,776 CG flashes detected by a veal-time network during less than 16 hours on n summer
day over the continental United States and adjacent vegions. Dots are flashes lowering negutive charge,
plus signs for flashes lowering positive charge.
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Ficure 26. Mayp of 44,975 flashes during less than 18 hours on a summer day over 1) : ful Linjled States

and adjacent regions. Diamonds for negative flashes, plus signs for positive
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Ficure 27. Map of 26,838 flashes over central Florida for 24 hours showing sea breezes aligned along both
coasts. Diamonds for negative flashes, plus signs for positive flashes.
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Ficure 28. Map of 2327 flashes over central Florida for 24 hours showing several separate storms. Diamonds
for negative flashes, plus signs for positive flashes.
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Fioure 29. Ma;} of 44,991 CG flashes during less than 13 hours on a day with several large organized convective
systems, Diamonds for negative flashes, plus signs for positive flashes.

Ficure 30. Same time period and flashes as Figure 29, except contoured by flash density. Outer contours of all
storms are 1 flash per 100 square km. Area inside smallest contour over Texas and Oklahoma exceeds 15
flashes per 100 square km.

38



Ficure 31. Map of 20,186 CG flashes from a mesoscale convective system during 24 hours over the central U.S.
Plains. Dots for negative flashes, plus signs for positive flashes.

Ficure 32. Map of 868 flashes during a 24-hour period in late winter showing three thunderstorm areas
associated with traveling disturbances. Diamonds for negative flashes, plus signs for positive flashes.
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Froure 33. Mayp of flashes during a 24-hour period in early spring showing linear east-west structure glomg a
warm frant in the southern Great Lakes vegion. Diamonds for negative flashes, plus signs. for positive
flashes.

\

Ficure 34. Map of 21,996 flashes during a 24-hour period in late autumn showing long linear structures in the
convection over the central United States. Dots for negative flashes, plus signs for positive flashes.
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Ficure 35. Map of 44,080 flashes during a 22-hour period of autumn associated with severe weather.
Diamonds for negative flashes, plus signs for positive flashes.

Ficure 36. Map of 19,517 flashes associated with a north-south cold front and east-west warm front in late
winter. Diamonds for negative flashes, plus signs for positive flashes.
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4. CONCLUSIONS

Several new technologies are available for
the real-time detection and localization of
Jightning discharges over large enough areas to
be of meteorological interest. Lightning
activity can be continuously monitored over
entire continents or over smaller areas such as
cities and airports.  Real-time three-di-
mensional displays of both cloud and CG light-
ning channels can be used over sensitive install-
ations such as airports and space centers. Each
of the available systems have limitations and
strong points, but calibrations and adjustments
of biases need to be performed for them.

The variety of meteorological appli-
cations reviewed in this report makes clear
that lightning detection using networks of
sensors can be very useful. First, monitoring of
lightning activity is important in itself for the
warning and short-time forecasting of the
lightning threat to the public, aeronautical
operations, electric utilities, communications,
forest and rangelands, and other interests.
Second, lighining data can be used as a sub-
stitute for radar and satellite information if
such data are not available for the monitoring
of convective systems. Third, lightning data
complement those from radar and other systems
to provide information about storms in a way
that is not possible with any other sensor by
itself. Lightning data from networks are also
unique in providing continuous, second-by-
second information of the presence, location,
and developmental trend of convection over
extensive areas. Several groups, ranging from
national forecasting centers to regional and
local forecasting offices, have used network
lightning data and found that they enhance
significantly their monitoring and forecasting
of convective weather.
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Meteorological research using lightning
data from networks is providing conceptual
models linking different patterns of lightning
activity for storms with meteorological phen-
omena such as hail, flash floods, microbursts,
heavy rainfall, tornadoes, and mesocyclones.
Climatologies of lightning activity provide an
understanding of when and where lightning
(and usually deep convective activity) is more
likely to occur under different regional and
synoptic flow regimes such as sea and lake
breezes, complex terrain circulations, mesoscale
convective systems, hurricanes, monsoons, and
convective winter storms. Statistical cor-
relations between lightning data and synoptic,
radar, and satellite parameters promise the
development of better forecasting tools.

More applications can be expected 1o be de-
veloped. Climatologies of flashes will help
define where and when the lightning and
thunderstorm threats are greatest. Real-time
data uses will become more complex, and
probably move far beyond the first level of use
that concentrates on the location and density of
flashes. More sophisticated quantitative mea-
sures will probably develop; they could include
the rate of change of flash density, changes in
the percentage of positive and negative
flashes, parameters combining lightning with
other meteorological data such as radar and
sounding information, and the use of flash
signal-strength and return-stroke multiplicity.

It is hoped that the description in this
report of the available technology, the outline
of the different applications and research
accomplished to date, and the extensive up-to-
date bibliography will be helpful for the use of
lightning information to improve warning and
forecasting capabilities.



5. BIBLIOGRAPHIES

A. OVERVIEW OF BIBLIOGRAPHIES

The list in this chapter includes all pub-
lished papers on real-time lightning mapping
systems. It includes papers in the 1970s describ-
ing the methodology that led directly to net-
work instrumentation. It also includes all pub-
lished studies on applications of lightning data
from detection networks, and network perfor-
mance studies that have been made. Many
informal publications will not be readily acces-
sible, however, they give the flow of ideas and
studies that have occurred during the rela-
tively short history of this instrumentation.
All papers are separated into formal and
informal, and applications and network per-
formance emphases, in Table 3 and Figure 37.

To be included in the bibliographies, refer-
ences need the following features:

e Networks of two or more lightning-
detecting antennas

e Networks are generally used in a real-time
operational setting by agencies providing
weather information, services 1o utilities,
forest fire protection, or pther operations

e References usually include a figure or table
containing network-derived lightning data

e An activity must be performed with the
data beyond mentioning their existence.
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There are two categories of papers that are
given in separate bibliographies. The division
is not always very clear, but the separation
should help find appropriate studies, as
follows:

e Section 5C. Applications using lightning
network data. These publications describe
how the lightning network data have been
used for any type of purpose. Most often,
they describe meteorological studies of how
lightning relates to one or more types of
other data, for one or many storms. A
yearly graph of the applications papers is
shown in Figure 38.

e Section 5D. Detection methods and
performance characteristics. These
publications describe primarily how  the
lightning signal is processed and handled,
how detection networks collect and process
their data, and feature the performance
parameters of one or more networks. A
yearly graph of the applications papers is
shown in Figure 39.

This list will be periodically updated, and
sent on request by the authors to assist access to
information about real-time network flash
data.



B. SUNM

RY OF PUBLISHED PAPERS ON NETWORKS

Tase3. Number of published papers by year where the use or description of real-time
lightning detection networks is included.

Applications Network All
performance

Formal /Informal Formal/Informal Formal/Informal

1976 0/ 0 2/ 0 2/ 0
1977 0/ 1 g/ 0 0/ 1
1978 0/ 1 0/ 0 0/ 1
1979 0/ 1 2/ 0 2/ 1
1980 0/ 2 2/ 2 2/ 4
1981 g/ 1 0/ 0 0/.1
1982 2/ 6 2/ 1 4/ 7
1983 1/13 0/ 3 1/16
1984 2/10 2/ 4 4/14
1985 0/16 i/ 3 1/19
1986 5/ 8 4/ 2 9/10
1987 8/ 9 5/ 1 13/30
1988 10/20 3/13 13/33
1989 7/33 9/10 16/43
1990 12/35 3/ 1 15/36
1991 12/18 3/12 15730
1992 6/16 1/16 7732
1993* 5/15 3/ 1 8/16
1994* 6/ 2 1/ 0 7/ 2
Total 76/207 43/69 119/276
*As of October 1993
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DEFINITIONS

6. ACRONYMS AND

5
SRR

ARSI Atmospheric Research Systems Incorporated‘.
CG Cloud-to-ground flash (ground flash, ground strike).
GDS GeoMet Data Systems, Incorporated.
LLP Lightning Location and Protection, Incorporated.
LPATS Lightning Position and Tracking System.
Mapping system A system that maps lightning flashes by locating sources of electromagnetic
radiation.
ONERA Office National d'Etudes et de Recherches Aérospatiales.
Polarity
Negative CG flash lowering negative charge to ground (most common).
Positive CG flash lowering positive charge to ground (less common).
SAFIR Systeme d'Alerte Foudre par Interferometrie Radioelectrique.
TOA Time-of-arrival method of lightning detection.
Total lightning All negative and positive CG and cloud flashes.
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